Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1992 Nov-Dec;65(6):725–740.

Structure, regulation, and pathophysiology of tight junctions in the gastrointestinal tract.

M S Balda 1, M B Fallon 1, C M Van Itallie 1, J M Anderson 1
PMCID: PMC2589754  PMID: 1341075

Abstract

The tight junction, or zonula occludens, forms an intercellular barrier between epithelial cells within the gastrointestinal tract and liver and, by limiting the movement of water and solutes through the intercellular space, maintains the physicochemical separation of tissue compartments. The paracellular barrier properties of junctions are regulated and quite different among epithelia. The junction also forms an intramembrane barrier between the apical and basolateral membrane domains, contributing to segregation of biochemically distinct components of these plasma membrane surfaces. Here we briefly review three rapidly developing areas of medically relevant basic knowledge about the tight junction. First, we describe the presently incomplete knowledge of the molecular structure of the tight junction as a framework for understanding its functional properties. Second, we consider experimental evidence defining how the barrier properties of junctions are physiologically regulated and, third, how barrier properties are specifically altered in, and contribute to, pathologic processes affecting epithelia.

Full text

PDF
725

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Glade J. L., Stevenson B. R., Boyer J. L., Mooseker M. S. Hepatic immunohistochemical localization of the tight junction protein ZO-1 in rat models of cholestasis. Am J Pathol. 1989 May;134(5):1055–1062. [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. M., Stevenson B. R., Jesaitis L. A., Goodenough D. A., Mooseker M. S. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol. 1988 Apr;106(4):1141–1149. doi: 10.1083/jcb.106.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atisook K., Carlson S., Madara J. L. Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am J Physiol. 1990 Jan;258(1 Pt 1):C77–C85. doi: 10.1152/ajpcell.1990.258.1.C77. [DOI] [PubMed] [Google Scholar]
  4. Bakker R., Groot J. A. cAMP-mediated effects of ouabain and theophylline on paracellular ion selectivity. Am J Physiol. 1984 Feb;246(2 Pt 1):G213–G217. doi: 10.1152/ajpgi.1984.246.2.G213. [DOI] [PubMed] [Google Scholar]
  5. Balda M. S., González-Mariscal L., Contreras R. G., Macias-Silva M., Torres-Marquez M. E., García-Sáinz J. A., Cereijido M. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol. 1991 Jun;122(3):193–202. doi: 10.1007/BF01871420. [DOI] [PubMed] [Google Scholar]
  6. Bentzel C. J., Hainau B., Ho S., Hui S. W., Edelman A., Anagnostopoulos T., Benedetti E. L. Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. Am J Physiol. 1980 Sep;239(3):C75–C89. doi: 10.1152/ajpcell.1980.239.3.C75. [DOI] [PubMed] [Google Scholar]
  7. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chapman L. M., Eddy E. M. A protein associated with the mouse and rat hepatocyte junctional complex. Cell Tissue Res. 1989 Aug;257(2):333–341. doi: 10.1007/BF00261837. [DOI] [PubMed] [Google Scholar]
  10. Citi S. Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol. 1992 Apr;117(1):169–178. doi: 10.1083/jcb.117.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Citi S., Sabanay H., Jakes R., Geiger B., Kendrick-Jones J. Cingulin, a new peripheral component of tight junctions. Nature. 1988 May 19;333(6170):272–276. doi: 10.1038/333272a0. [DOI] [PubMed] [Google Scholar]
  12. Citi S., Sabanay H., Kendrick-Jones J., Geiger B. Cingulin: characterization and localization. J Cell Sci. 1989 May;93(Pt 1):107–122. doi: 10.1242/jcs.93.1.107. [DOI] [PubMed] [Google Scholar]
  13. Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978 Mar 10;39(2-3):219–232. doi: 10.1007/BF01870332. [DOI] [PubMed] [Google Scholar]
  15. De Vos R., Desmet V. J. Morphologic changes of the junctional complex of the hepatocytes in rat liver after bile duct ligation. Br J Exp Pathol. 1978 Apr;59(2):220–227. [PMC free article] [PubMed] [Google Scholar]
  16. De Vos R., de Wolf-Peeters C., Desmet V., Eggermont E., Van Acker K. Progressive intrahepatic cholestasis (Byler's disease): case report. Gut. 1975 Dec;16(12):943–950. doi: 10.1136/gut.16.12.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Diamond J. M. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist. 1977 Feb;20(1):10–18. [PubMed] [Google Scholar]
  18. Dinoso V. P., Jr, Ming S., McNiff J. Ultrastructural changes of the canine gastric mucosa after topical application of graded concentrations of ethanol. Am J Dig Dis. 1976 Aug;21(8):626–632. doi: 10.1007/BF01071955. [DOI] [PubMed] [Google Scholar]
  19. Drenckhahn D., Dermietzel R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol. 1988 Sep;107(3):1037–1048. doi: 10.1083/jcb.107.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dubin M., Maurice M., Feldmann G., Erlinger S. Phalloidin-induced cholestasis in the rat: relation to changes in microfilaments. Gastroenterology. 1978 Sep;75(3):450–455. [PubMed] [Google Scholar]
  21. Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
  22. Elias E., Hruban Z., Wade J. B., Boyer J. L. Phalloidin-induced cholestasis: a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2229–2233. doi: 10.1073/pnas.77.4.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fasano A., Baudry B., Pumplin D. W., Wasserman S. S., Tall B. D., Ketley J. M., Kaper J. B. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5242–5246. doi: 10.1073/pnas.88.12.5242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Friend D. S., Gilula N. B. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972 Jun;53(3):758–776. doi: 10.1083/jcb.53.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gabbiani G., Montesano R., Tuchweber B., Salas M., Orci L. Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes. Lab Invest. 1975 Nov;33(5):562–569. [PubMed] [Google Scholar]
  27. Gonzalez-Mariscal L., Chávez de Ramírez B., Cereijido M. Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol. 1985;86(2):113–125. doi: 10.1007/BF01870778. [DOI] [PubMed] [Google Scholar]
  28. Gonzalez-Mariscal L., Contreras R. G., Bolívar J. J., Ponce A., Chávez De Ramirez B., Cereijido M. Role of calcium in tight junction formation between epithelial cells. Am J Physiol. 1990 Dec;259(6 Pt 1):C978–C986. doi: 10.1152/ajpcell.1990.259.6.C978. [DOI] [PubMed] [Google Scholar]
  29. Gumbiner B., Lowenkopf T., Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3460–3464. doi: 10.1073/pnas.88.8.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol. 1987 Dec;253(6 Pt 1):C749–C758. doi: 10.1152/ajpcell.1987.253.6.C749. [DOI] [PubMed] [Google Scholar]
  31. Hecht G., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988 Nov;82(5):1516–1524. doi: 10.1172/JCI113760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hirokawa N., Tilney L. G. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol. 1982 Oct;95(1):249–261. doi: 10.1083/jcb.95.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hollander D. Crohn's disease--a permeability disorder of the tight junction? Gut. 1988 Dec;29(12):1621–1624. doi: 10.1136/gut.29.12.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hollander D., Vadheim C. M., Brettholz E., Petersen G. M., Delahunty T., Rotter J. I. Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann Intern Med. 1986 Dec;105(6):883–885. doi: 10.7326/0003-4819-105-6-883. [DOI] [PubMed] [Google Scholar]
  35. Holman G. D., Naftalin R. J., Simmons N. L., Walker M. Electrophysiological and electron-microscopical correlations with fluid and electrolyte secretion in rabbit ileum. J Physiol. 1979 May;290(2):367–386. doi: 10.1113/jphysiol.1979.sp012776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jansen J. W., de Pont J. J., Bonting S. L. Transepithelial permeability in the rabbit pancreas. Biochim Biophys Acta. 1979 Feb 20;551(1):95–108. doi: 10.1016/0005-2736(79)90356-0. [DOI] [PubMed] [Google Scholar]
  37. Kan K. S., Coleman R. The calcium ionophore A23187 increases the tight-junctional permeability in rat liver. Biochem J. 1988 Dec 15;256(3):1039–1041. doi: 10.1042/bj2561039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kuijpers G. A., Van Nooy I. G., Vossen M. E., Stadhouders A. M., Van Uyen A., De Pont J. J., Bonting S. L. Tight junctional permeability of the resting and carbachol stimulated exocrine rabbit pancreas. Histochemistry. 1985;83(3):257–264. doi: 10.1007/BF00953994. [DOI] [PubMed] [Google Scholar]
  39. Llopis J., Kass G. E., Duddy S. K., Farell G. C., Gahm A., Orrenius S. Mobilization of the hormone-sensitive calcium pool increases hepatocyte tight junctional permeability in the perfused rat liver. FEBS Lett. 1991 Mar 11;280(1):84–86. doi: 10.1016/0014-5793(91)80209-l. [DOI] [PubMed] [Google Scholar]
  40. Lowe P. J., Miyai K., Steinbach J. H., Hardison W. G. Hormonal regulation of hepatocyte tight junctional permeability. Am J Physiol. 1988 Oct;255(4 Pt 1):G454–G461. doi: 10.1152/ajpgi.1988.255.4.G454. [DOI] [PubMed] [Google Scholar]
  41. Madara J. L., Barenberg D., Carlson S. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol. 1986 Jun;102(6):2125–2136. doi: 10.1083/jcb.102.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Madara J. L., Carlson S. Supraphysiologic L-tryptophan elicits cytoskeletal and macromolecular permeability alterations in hamster small intestinal epithelium in vitro. J Clin Invest. 1991 Feb;87(2):454–462. doi: 10.1172/JCI115017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Madara J. L., Pappenheimer J. R. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol. 1987;100(2):149–164. doi: 10.1007/BF02209147. [DOI] [PubMed] [Google Scholar]
  44. Madara J. L., Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest. 1989 Feb;83(2):724–727. doi: 10.1172/JCI113938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Madara J. L. Tight junction dynamics: is paracellular transport regulated? Cell. 1988 May 20;53(4):497–498. doi: 10.1016/0092-8674(88)90562-4. [DOI] [PubMed] [Google Scholar]
  46. Marin M. L., Geller S. A., Greenstein A. J., Marin R. H., Gordon R. E., Aufses A. H., Jr Ultrastructural pathology of Crohn's disease: correlated transmission electron microscopy, scanning electron microscopy, and freeze fracture studies. Am J Gastroenterol. 1983 Jun;78(6):355–364. [PubMed] [Google Scholar]
  47. Mazariegos M. R., Tice L. W., Hand A. R. Alteration of tight junctional permeability in the rat parotid gland after isoproterenol stimulation. J Cell Biol. 1984 May;98(5):1865–1877. doi: 10.1083/jcb.98.5.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. McRoberts J. A., Aranda R., Riley N., Kang H. Insulin regulates the paracellular permeability of cultured intestinal epithelial cell monolayers. J Clin Invest. 1990 Apr;85(4):1127–1134. doi: 10.1172/JCI114544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Meldolesi J., Castiglioni G., Parma R., Nassivera N., De Camilli P. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J Cell Biol. 1978 Oct;79(1):156–172. doi: 10.1083/jcb.79.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Meyer R. A., McGinley D., Posalaky Z. Effects of aspirin on tight junction structure of the canine gastric mucosa. Gastroenterology. 1986 Aug;91(2):351–359. doi: 10.1016/0016-5085(86)90568-8. [DOI] [PubMed] [Google Scholar]
  51. Meza I., Ibarra G., Sabanero M., Martínez-Palomo A., Cereijido M. Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol. 1980 Dec;87(3 Pt 1):746–754. doi: 10.1083/jcb.87.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Moreno J. H., Diamond J. M. Nitrogenous cations as probes of permeation channels. J Membr Biol. 1975;21(3-4):197–259. doi: 10.1007/BF01941070. [DOI] [PubMed] [Google Scholar]
  53. Nigam S. K., Denisenko N., Rodriguez-Boulan E., Citi S. The role of phosphorylation in development of tight junctions in cultured renal epithelial (MDCK) cells. Biochem Biophys Res Commun. 1991 Dec 16;181(2):548–553. doi: 10.1016/0006-291x(91)91224-z. [DOI] [PubMed] [Google Scholar]
  54. Phillips M. J., Oda M., Mak E., Fisher M. M., Jeejeebhoy K. N. Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology. 1975 Jul;69(1):48–58. [PubMed] [Google Scholar]
  55. Phillips T. E., Phillips T. L., Neutra M. R. Macromolecules can pass through occluding junctions of rat ileal epithelium during cholinergic stimulation. Cell Tissue Res. 1987 Mar;247(3):547–554. doi: 10.1007/BF00215748. [DOI] [PubMed] [Google Scholar]
  56. Powell D. W. Barrier function of epithelia. Am J Physiol. 1981 Oct;241(4):G275–G288. doi: 10.1152/ajpgi.1981.241.4.G275. [DOI] [PubMed] [Google Scholar]
  57. Powell D. W. Intestinal conductance and permselectivity changes with theophylline and choleragen. Am J Physiol. 1974 Dec;227(6):1436–1443. doi: 10.1152/ajplegacy.1974.227.6.1436. [DOI] [PubMed] [Google Scholar]
  58. Rao M. C., Nash N. T., Field M. Differing effects of cGMP and cAMP on ion transport across flounder intestine. Am J Physiol. 1984 Jan;246(1 Pt 1):C167–C171. doi: 10.1152/ajpcell.1984.246.1.C167. [DOI] [PubMed] [Google Scholar]
  59. Robenek H., Herwig J., Themann H. The morphologic characteristics of intercellular junctions between normal human liver cells and cells from patients with extrahepatic cholestasis. Am J Pathol. 1980 Jul;100(1):93–114. [PMC free article] [PubMed] [Google Scholar]
  60. SEDAR A. W., FORTE J. G. EFFECTS OF CALCIUM DEPLETION ON THE JUNCTIONAL COMPLEX BETWEEN OXYNTIC CELLS OF GASTRIC GLANDS. J Cell Biol. 1964 Jul;22:173–188. doi: 10.1083/jcb.22.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Siliciano J. D., Goodenough D. A. Localization of the tight junction protein, ZO-1, is modulated by extracellular calcium and cell-cell contact in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1988 Dec;107(6 Pt 1):2389–2399. doi: 10.1083/jcb.107.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Staehelin L. A. Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci. 1973 Nov;13(3):763–786. doi: 10.1242/jcs.13.3.763. [DOI] [PubMed] [Google Scholar]
  63. Stevenson B. R., Anderson J. M., Bullivant S. The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem. 1988 Oct;83(2):129–145. doi: 10.1007/BF00226141. [DOI] [PubMed] [Google Scholar]
  64. Stevenson B. R., Heintzelman M. B., Anderson J. M., Citi S., Mooseker M. S. ZO-1 and cingulin: tight junction proteins with distinct identities and localizations. Am J Physiol. 1989 Oct;257(4 Pt 1):C621–C628. doi: 10.1152/ajpcell.1989.257.4.C621. [DOI] [PubMed] [Google Scholar]
  65. Stevenson B. R., Siliciano J. D., Mooseker M. S., Goodenough D. A. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986 Sep;103(3):755–766. doi: 10.1083/jcb.103.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. TIDBALL C. S. MAGNESIUM AND CALCIUM AS REGULATORS OF INTESTINAL PERMEABILITY. Am J Physiol. 1964 Jan;206:243–246. doi: 10.1152/ajplegacy.1964.206.1.243. [DOI] [PubMed] [Google Scholar]
  67. Weber A. M., Tuchweber B., Yousef I., Brochu P., Turgeon C., Gabbiani G., Morin C. L., Roy C. C. Severe familial cholestasis in North American Indian children: a clinical model of microfilament dysfunction? Gastroenterology. 1981 Oct;81(4):653–662. [PubMed] [Google Scholar]
  68. Yamaguchi Y., Dalle-Molle E., Hardison W. G. Vasopressin and A23187 stimulate phosphorylation of myosin light chain-1 in isolated rat hepatocytes. Am J Physiol. 1991 Aug;261(2 Pt 1):G312–G319. doi: 10.1152/ajpgi.1991.261.2.G312. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES