Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991;440:581–599. doi: 10.1113/jphysiol.1991.sp018726

Involvement of GABA systems in feedback regulation of glutamate-and GABA-mediated synaptic potentials in rat neostriatum.

P Calabresi 1, N B Mercuri 1, M De Murtas 1, G Bernardi 1
PMCID: PMC1180170  PMID: 1666654

Abstract

1. Neostriatal neurones were recorded intracellularly from a rat corticostriatal slice preparation. Depolarizing postsynaptic potentials (DPSPs) were evoked by either cortical or intrastriatal stimulation. 2. Kynurenic acid (600 microM), an antagonist of excitatory amino acids, reduced the cortically-evoked DPSPs by 88% while the intrastriatally evoked potentials were reduced by 48%. Bicuculline (100 microM) produced only a slight inhibition of the cortically evoked DPSPs (12%), but clearly depressed intrastriatal potentials (52%). 3. The effects of (-)-baclofen, a gamma-aminobutyric acid (GABA)B receptor agonist, were studied on the cortically evoked DPSPs. In all the tested neurones (-)-baclofen, added to the superfusion medium, caused a concentration-dependent decrease of these potentials (half-maximal effect (EC50) = 800 nM). This effect was not affected by bicuculline. (-)-Baclofen did not change the membrane potential, the input resistance, current-evoked firing frequency, or postsynaptic responses to exogenously applied glutamate. 4. The effects of (-)-baclofen on the DPSPs were compared to those produced by application of GABA and muscimol. GABA and muscimol decreased the DPSPs and caused a membrane depolarization coupled with a decrease of the membrane resistance. Bicuculline (100 microM) blocked the GABA-induced changes of the membrane potential and of the resistance, but not the decrease of the synaptic potentials. All the effects produced by muscimol were blocked by bicuculline. 5. Following intrastriatal stimulation a residual kynurenate-insensitive potential persisted; this potential was blocked by bicuculline (100 microM). (-)-Baclofen produced a dose-dependent decrease of this potential (EC50 = 800 nM). The postsynaptic responses to exogenously applied GABA were unchanged by (-)-baclofen. 6. The amplitude of kynurenate and bicuculline-sensitive DPSPs were stable at a frequency of 0.1 Hz. At frequencies between 0.3 and 3 Hz both these potentials were attenuated with the second stimulus and after about five stimuli a steady state was reached. Membrane potential and input resistance were not affected by these frequencies of stimulation. 7. Application of the GABA uptake inhibitor nipecotic acid (100-300 microM) clearly reduced the amplitude of both kynurenate-and bicuculline-sensitive DPSPs evoked at low frequencies of stimulation (0.01-0.3 Hz), but had lower effects at higher stimulation rates (1-3 Hz). Application of nipecotic acid increased the duration of membrane responses to exogenously applied GABA.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
581

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault B., Nadler J. V. Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J Pharmacol Exp Ther. 1982 Nov;223(2):291–297. [PubMed] [Google Scholar]
  2. Bonanno G., Cavazzani P., Andrioli G. C., Asaro D., Pellegrini G., Raiteri M. Release-regulating autoreceptors of the GABAB-type in human cerebral cortex. Br J Pharmacol. 1989 Feb;96(2):341–346. doi: 10.1111/j.1476-5381.1989.tb11823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
  4. Bowery N. G., Hudson A. L., Price G. W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987 Feb;20(2):365–383. doi: 10.1016/0306-4522(87)90098-4. [DOI] [PubMed] [Google Scholar]
  5. Bowery N. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci. 1989 Oct;10(10):401–407. doi: 10.1016/0165-6147(89)90188-0. [DOI] [PubMed] [Google Scholar]
  6. Calabresi P., Benedetti M., Mercuri N. B., Bernardi G. Endogenous dopamine and dopaminergic agonists modulate synaptic excitation in neostriatum: intracellular studies from naive and catecholamine-depleted rats. Neuroscience. 1988 Oct;27(1):145–157. doi: 10.1016/0306-4522(88)90225-4. [DOI] [PubMed] [Google Scholar]
  7. Calabresi P., Lacey M. G., North R. A. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol. 1989 Sep;98(1):135–140. doi: 10.1111/j.1476-5381.1989.tb16873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Calabresi P., Mercuri N. B., Bernardi G. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. II. An in vitro analysis. J Neurophysiol. 1990 Apr;63(4):663–675. doi: 10.1152/jn.1990.63.4.663. [DOI] [PubMed] [Google Scholar]
  9. Calabresi P., Mercuri N. B., De Murtas M., Bernardi G. Endogenous GABA mediates presynaptic inhibition of spontaneous and evoked excitatory synaptic potentials in the rat neostriatum. Neurosci Lett. 1990 Oct 2;118(1):99–102. doi: 10.1016/0304-3940(90)90258-b. [DOI] [PubMed] [Google Scholar]
  10. Calabresi P., Mercuri N. B., Stefani A., Bernardi G. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J Neurophysiol. 1990 Apr;63(4):651–662. doi: 10.1152/jn.1990.63.4.651. [DOI] [PubMed] [Google Scholar]
  11. Calabresi P., Mercuri N., Stanzione P., Stefani A., Bernardi G. Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience. 1987 Mar;20(3):757–771. doi: 10.1016/0306-4522(87)90239-9. [DOI] [PubMed] [Google Scholar]
  12. Calabresi P., Misgeld U., Dodt H. U. Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity. Neuroscience. 1987 Jan;20(1):293–303. doi: 10.1016/0306-4522(87)90021-2. [DOI] [PubMed] [Google Scholar]
  13. Chang H. T., Wilson C. J., Kitai S. T. A Golgi study of rat neostriatal neurons: light microscopic analysis. J Comp Neurol. 1982 Jun 20;208(2):107–126. doi: 10.1002/cne.902080202. [DOI] [PubMed] [Google Scholar]
  14. Cherubini E., Herrling P. L., Lanfumey L., Stanzione P. Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. J Physiol. 1988 Jun;400:677–690. doi: 10.1113/jphysiol.1988.sp017143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Curtis D. R., Lodge D., Bornstein J. C., Peet M. J. Selective effects of (-)-baclofen on spinal synaptic transmission in the cat. Exp Brain Res. 1981;42(2):158–170. doi: 10.1007/BF00236902. [DOI] [PubMed] [Google Scholar]
  16. Davies C. H., Davies S. N., Collingridge G. L. Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol. 1990 May;424:513–531. doi: 10.1113/jphysiol.1990.sp018080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deisz R. A., Prince D. A. Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol. 1989 May;412:513–541. doi: 10.1113/jphysiol.1989.sp017629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Divac I., Fonnum F., Storm-Mathisen J. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature. 1977 Mar 24;266(5600):377–378. doi: 10.1038/266377a0. [DOI] [PubMed] [Google Scholar]
  19. Dolphin A. C., Scott R. H. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol. 1987 May;386:1–17. doi: 10.1113/jphysiol.1987.sp016518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dunlap K. Two types of gamma-aminobutyric acid receptor on embryonic sensory neurones. Br J Pharmacol. 1981 Nov;74(3):579–585. doi: 10.1111/j.1476-5381.1981.tb10467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dutar P., Nicoll R. A. A physiological role for GABAB receptors in the central nervous system. Nature. 1988 Mar 10;332(6160):156–158. doi: 10.1038/332156a0. [DOI] [PubMed] [Google Scholar]
  22. Dutar P., Nicoll R. A. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron. 1988 Sep;1(7):585–591. doi: 10.1016/0896-6273(88)90108-0. [DOI] [PubMed] [Google Scholar]
  23. Ebadi M., Hama Y. Dopamine, GABA, cholecystokinin and opioids in neuroleptic-induced tardive dyskinesia. Neurosci Biobehav Rev. 1988 Fall-Winter;12(3-4):179–187. doi: 10.1016/s0149-7634(88)80039-3. [DOI] [PubMed] [Google Scholar]
  24. Enna S. J., Bennett J. P., Jr, Bylund D. B., Snyder S. H., Bird E. D., Iversen L. L. Alterations of brain neurotransmitter receptor binding in Huntington's chorea. Brain Res. 1976 Nov 12;116(3):531–537. doi: 10.1016/0006-8993(76)90502-3. [DOI] [PubMed] [Google Scholar]
  25. Giuliani S., Evangelista S., Borsini F., Meli A. Intracerebroventricular phaclofen antagonizes baclofen antinociceptive activity in hot plate test with mice. Eur J Pharmacol. 1988 Sep 13;154(2):225–226. doi: 10.1016/0014-2999(88)90105-7. [DOI] [PubMed] [Google Scholar]
  26. Graveland G. A., Williams R. S., DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science. 1985 Feb 15;227(4688):770–773. doi: 10.1126/science.3155875. [DOI] [PubMed] [Google Scholar]
  27. Groves P. M. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res. 1983 Mar;286(2):109–132. doi: 10.1016/0165-0173(83)90011-5. [DOI] [PubMed] [Google Scholar]
  28. Gähwiler B. H., Brown D. A. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1558–1562. doi: 10.1073/pnas.82.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Howe J. R., Sutor B., Zieglgänsberger W. Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol. 1987 Mar;384:539–569. doi: 10.1113/jphysiol.1987.sp016469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kerr D. I., Ong J., Johnston G. A., Abbenante J., Prager R. H. 2-Hydroxy-saclofen: an improved antagonist at central and peripheral GABAB receptors. Neurosci Lett. 1988 Sep 23;92(1):92–96. doi: 10.1016/0304-3940(88)90748-3. [DOI] [PubMed] [Google Scholar]
  31. Kupersmith M. J., Goldstein M. The effect of decortication on the basal ganglia GABA receptor. Neurosci Lett. 1980 May 1;17(3):335–337. doi: 10.1016/0304-3940(80)90046-4. [DOI] [PubMed] [Google Scholar]
  32. Lacey M. G., Mercuri N. B., North R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol. 1988 Jul;401:437–453. doi: 10.1113/jphysiol.1988.sp017171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Misgeld U., Wagner A., Ohno T. Depolarizing IPSPs and Depolarization by GABA of rat neostriatum cells in vitro. Exp Brain Res. 1982;45(1-2):108–114. doi: 10.1007/BF00235769. [DOI] [PubMed] [Google Scholar]
  34. Newberry N. R., Nicoll R. A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. 1984 Mar 29-Apr 4Nature. 308(5958):450–452. doi: 10.1038/308450a0. [DOI] [PubMed] [Google Scholar]
  35. Olney J. W. Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry. 1989 Sep;26(5):505–525. doi: 10.1016/0006-3223(89)90072-3. [DOI] [PubMed] [Google Scholar]
  36. Preston R. J., Bishop G. A., Kitai S. T. Medium spiny neuron projection from the rat striatum: an intracellular horseradish peroxidase study. Brain Res. 1980 Feb 10;183(2):253–263. doi: 10.1016/0006-8993(80)90462-x. [DOI] [PubMed] [Google Scholar]
  37. Reubi J. C., Cuenod M. Glutamate release in vitro from corticostriatal terminals. Brain Res. 1979 Oct 26;176(1):185–188. doi: 10.1016/0006-8993(79)90884-9. [DOI] [PubMed] [Google Scholar]
  38. Scholfield C. N. Baclofen blocks postsynaptic inhibition but not the effect of muscimol in the olfactory cortex. Br J Pharmacol. 1983 Jan;78(1):79–84. doi: 10.1111/j.1476-5381.1983.tb09365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spencer H. J. Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res. 1976 Jan 30;102(1):91–101. doi: 10.1016/0006-8993(76)90577-1. [DOI] [PubMed] [Google Scholar]
  40. Thompson S. M., Gähwiler B. H. Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J Neurophysiol. 1989 Mar;61(3):501–511. doi: 10.1152/jn.1989.61.3.501. [DOI] [PubMed] [Google Scholar]
  41. Thompson S. M., Gähwiler B. H. Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. J Neurophysiol. 1989 Mar;61(3):524–533. doi: 10.1152/jn.1989.61.3.524. [DOI] [PubMed] [Google Scholar]
  42. Waldmeier P. C., Wicki P., Feldtrauer J. J., Baumann P. A. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn Schmiedebergs Arch Pharmacol. 1988 Mar;337(3):289–295. doi: 10.1007/BF00168841. [DOI] [PubMed] [Google Scholar]
  43. Wang M. Y., Dun N. J. Phaclofen-insensitive presynaptic inhibitory action of (+/-)-baclofen in neonatal rat motoneurones in vitro. Br J Pharmacol. 1990 Feb;99(2):413–421. doi: 10.1111/j.1476-5381.1990.tb14718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilson C. J., Groves P. M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J Comp Neurol. 1980 Dec 1;194(3):599–615. doi: 10.1002/cne.901940308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES